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Abstract

Lung cancer accounts for 12.3% of global cancer cases
with variability across regions, races and genders.
Lung cancer involves oncogene activation, such as
mutated KRAS and tumor suppressor gene
dysregulation like p53. KRAS mutations are commonly
seen in pancreatic, colorectal and lung cancers. These
mutations disrupt normal cell signaling and promote
tumor growth. In this study, 63 KRAS mutations from
28,964 COSMIC database samples were analyzed.

The mutants were screened for their pathogenicity and
nine highly deleterious mutations were identified. The
stability of the mutants was checked with that of the
wild type kras. Physiochemical properties were
predicted using Protparam tools revealing that the
properties of the mutants showed no major deviations
from the wild type. The three-dimensional structures of
the wild type and mutants were modelled using Robetta
and the structures were validated using MolProbity
server. The KRAS wild type and mutant structures were
docked with Guanosine-5'-triphosphate (GTP) using
Autodock Vina. The results indicated that the mutant
D57N exhibited more affinity than the wild type and
other mutants under study.
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Introduction

Lung cancer is the most prevalent of all the cancer cases®.
Its incidence varies notably by geographic location, race and
gender. Research indicates that women may be at an
increased risk for lung cancer due to exposure to
carcinogenic substances in tobacco smoke. Lifelong
smokers face a lung cancer risk that is 20 to 30 times higher
than that of non-smokers. While smoking rates in the United
States are decreasing, China and Eastern Europe are
experiencing a smoking epidemic which could lead to
millions of new lung cancer diagnoses in this century!%22.23,
Preventing lung cancer is feasible, as quitting smoking can
substantially lower the risk.

However, the benefits of cessation are not immediate; there
is usually a delay of about seven years before risk reduction
becomes noticeable??. The development of lung cancer is
associated with the activation of various oncogenes
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including c-Myc, mutated KRAS (which appears in 15%-
20% of non-small cell lung cancers, especially
adenocarcinomas, but is absent in small cell lung cancers)
and the overexpression of EGFR, cyclin D1 and BCL2.
These oncogenes are essential for cell growth, division and
apoptosis, all of which contribute to the onset and
advancement of the disease®. Most lung cancers express
both telomerase RNA (hTR) and its catalytic subunit
(hTERT), providing a pathway for cellular immortality.

Tumor suppressor genes (TSGs) frequently involved in lung
cancer include p53 (mutated in about 90% of small cell lung
cancers and 50% of non-small cell lung cancers),
Retinoblastoma (Rb) (affected in roughly 90% of small cell
lung cancers and about 20% of non-small cell lung cancers)
and pl16 (observed in over 50% of non-small cell lung
cancers but less than 1% of small cell lung cancers). These
TSGs play critical roles in controlling cell growth and
division and their dysfunction significantly contributes to the
development and progression of lung cancer?.

KRAS is a key protein involved in cell signaling, crucial for
regulating cell proliferation and other essential cellular
functions. It acts as an important hub in the cell's
communication network, receiving signals from upstream
sources and transmitting activating signals to various
downstream pathways including the mitogen-activated
protein kinase (MAPK) pathway®. KRAS exists in two
primary states: an inactive form bound to guanosine
diphosphate (GDP) and an active form bound to guanosine
triphosphate (GTP). This switching between states is vital
for its role in cellular signaling?®.

When KRAS is active and bound to GTP, it can interact with
and activate several effector proteins, such as RAF kinases,
PI3K and RalGDS. This activation occurs when a guanosine
exchange factor (GEF) displaces GDP in the nucleotide
binding site, allowing GTP to bind, aided by the higher
concentration of GTP relative to GDP in the cell?
Deactivation of active KRAS occurs through the hydrolysis
of GTP to GDP. Although KRAS has a low intrinsic GTPase
activity, this process is significantly enhanced by GTPase
activating proteins (GAPSs), which accelerate the hydrolysis
reaction and facilitate the transition from the active to
inactive state?'2.

In pancreatic, colorectal and lung cancers, mutations in the

KRAS gene, particularly missense mutations that result in
the substitution of a single amino acid, are common. These
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mutations have profound effects on KRAS functionality and
are linked to cancer development®®. In this study, we have
explored the effects of the KRAS gene mutations on lung
cancer computationally, predicting its properties and
stability by comparing it with the wild type KRAS.

Material and Methods
Collection and Screening of KRAS mutants: Variants in
the KRAS gene associated with lung cancer were sourced
from the COSMIC database?®. The FASTA sequence of the
wild type KRAS was obtained from the UniProt database
with the identifier P01116.

Pathogenicity analysis of the mutants: To study the effect
of missense mutations on the pathogenicity of KRAS
mutants, Meta-SNP server was used. Meta-SNP integrates
four methods: PANTHER?¢, PhD-SNP*, SIFT?! and SNAP*3
which help in filtering disease causing mutations from
neutral mutations. The FASTA sequences of the wild type
and mutant KRAS proteins were given as inputs and
pathogenicity was determined for all 63 mutants.

Stability analysis of the mutants: In order to predict the
stability of missense mutations, iStable, I-Mutant2.0 and
MUpro servers were used>’.

Physicochemical Properties of the mutants: ProtParam
tool™ (www.expasy.org/tools/protparam.html) was used to
predict the various physicochemical parameters of wild type
and mutant proteins. Amino acid sequences were given as
inputs. Properties such as theoretical isoelectric point,
extinction coefficient, instability index, aliphatic index (Al)
and GRAVY (Grand Average of Hydrophobicity) scores
were predicted.

KRAS  Structure Prediction: PSIPRED (http:/
bioinf.cs.ucl.ac.uk/psipred/) was used to evaluate the protein
secondary structures of wild type and mutant proteins®. The
three dimensional structure of the wild type and mutant
KRAS was predicted using Robetta server® using Ab-intio
modelling. The generated models were validated using
Molprobity?®. The best models were used for molecular
docking.

Molecular Docking and Binding analysis: Molecular
docking was performed between guanosine triphosphate
(GTP) and wild/mutant KRAS protein using AutoDock
Vina?’. Post-dock binding analysis of the protein-ligand
complex was performed using protein ligand interaction
profiler server (https://plip-tool.biotec.tu-dresden.de/plip-
web/plip/index)?.

Results and Discussion

Over the past two decades, high-throughput sequencing has
driven a major increase in Single Nucleotide Polymorphism
(SNP) data, leading to extensive mutation databases with
numerous variants still unclassified. Previous studies
highlight the significance of non-synonymous SNPs in both
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simple and complex diseases, emphasizing the role of in
silico prediction tools to understand how these mutations
affect protein structure and function. Protein-protein
interactions (PPIs) are essential for cellular functions like
signaling and regulation. Mutations at PPI interfaces, such
as single amino acid substitutions, can disrupt protein
complex formation by altering shape, size, secondary
structure, hydrophobicity and causing conformational
changes. Additionally, the mutation of a smaller amino acid
to a larger one can create inter-molecular clashes, while a
smaller mutation may result in gaps, disrupting protein
folding and functionality'’.

Efficiently categorizing SNPs, particularly through
combined data from in silico tools (e.g. structural analysis
and molecular dynamics simulations), has enhanced
predictions of genetic variant impact, improving our
understanding of molecular pathology in rare disorders.
These computational methods are crucial for advancing
personalized medicine, pharmacogenomics and genetic
disease prognosis'®. In this study, we focus on characterizing
functional effects of curated KRAS mutations using in silico
pathogenicity and stability predictions, structure modeling
and docking analysis.

Collection and Screening of KRAS mutants: The
COSMIC database, which houses causative mutations for
various cancer types, was used to gather mutations
associated with lung cancer in the KRAS protein. A total of
190,793 KRAS mutations were identified from the COSMIC
database, in which 28,964 were linked to the onset of lung
cancer. Among the 28,964 mutation samples, 63 distinct
mutations were identified and further analyzed for its
pathogenicity and stability.

Pathogenicity of the KRAS mutants: The pathogenicity of
the 63 mutants was assessed using Meta-SNP server. The
server integrates various tools like PANTHER, PhD-SNP,
SIFT and SNAP. In PANTHER, PhD-SNP and SNAP, the
output is given in values ranging between 0 and 1. If the
predicted values of mutations are greater than 0.5, it is
designated as disease-causing mutants and if the values are
less than 0.5, they are designated as neutral. In case of SIFT
tool, the values less than 0.05 are predicted as disease-
causing mutations and greater than 0.05 are considered to be
neutral. Among the 63 mutants, 8 mutants: A18D, D57N,
G10V, G12C, G13C, G13D, G13V and T58I were predicted
to be disease causing by PANTHER, PhD-SNP, SIFT,
SNAP and Meta-SNP (Table 1). These mutants were
analyzed further for their stability and properties.

Stability Prediction of KRAS mutants: The stability of a
protein is the overall balance of forces that dictate whether it
will assume its functional folded structure or an abnormal
conformation that may impair its function?®. The eight
mutants were assessed for its stability upon mutation (Table
2). The iStable server'® predicts protein stability changes
due to mutations using thermodynamic parameters. A single
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amino acid mutation can significantly affect protein
structure resulting in changes in folding free energy and
stability. 1-Mutant2.0 was employed to assess the change in
folding free energy (ddG)*’. Stability of the mutants was also
assessed using MUprol18. MUpro's confidence score ranges
from —1 to 1, reflecting the likelihood of stability changes,
with higher scores indicating greater confidence!®.

From the table 2, It could be observed that the mutations —
G10V, G13C and G13V decreased the stability of the
proteins. With respect to A18D and D57N, MUpro and
iStable predicted that the mutation caused a decrease in the
stability, whereas iMutant predicted an increase in stability.
For the mutants G12C and G13D, MUpro and iStable
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predicted that the mutation caused an increase in the
stability, whereas iMutant predicted an decrease in stability.
For G13D, iMutant and iStable predicted that the mutation
caused a decrease in the stability, whereas MUpro predicted
an increase in stability.

Physicochemical Properties of the mutants: The
physiochemical properties of the eight mutants were
predicted using Protparam tool (Table 3). All mutants did
not show much difference in molecular weight (~21kDa).
With respect to the theoretical pl, the mutants - G10V,
G12C, G13C, G13V and T58I had pl similar to that of the
wild type KRAS (6.33).

Table 1
Pathogenicity values of various KRAS mutants
Amino | Coding PANTHER PhD-SNP SIFT SNAP Meta-SNP
Acid | Sequence
A18D | c¢.53C>A Disease 0.683 Disease 0.9 Disease 0 Disease | 0.685 | Disease | 0.777
D57N | ¢.169G>A | Disease 0.509 | Disease | 0.814 | Disease 0 Disease | 0.875 | Disease | 0.799
G10V | ¢.29G>T Disease 0.665 | Disease | 0.934 | Disease 0 Disease | 0.845 | Disease | 0.902
G12C | ¢.34G>T Disease 0.644 | Disease | 0.885 | Disease | 0.02 | Disease | 0.65 | Disease | 0.762
G13C | ¢.37G>T Disease 0.863 | Disease | 0.927 | Disease | 0.01 | Disease | 0.72 | Disease | 0.807
G13D | c¢.38G>A Disease 0.742 Disease | 0.923 | Disease 0 Disease | 0.795 | Disease | 0.808
G13V | ¢.38G>T Disease 0.78 Disease | 0.925 | Disease | 0.01 | Disease | 0.785 | Disease | 0.831
T58I €.173C>T | Disease 0.765 | Disease | 0.793 | Disease | 0.01 | Disease | 0.765 | Disease | 0.771
Table 2
Stability prediction of KRAS mutants
Amino Coding i-Mutant2.0 SEQ DDG MUpro | Conf. Score iStable | Conf. Score
Acid Sequence
Al18D c.53C>A Increase -0.02 Decrease | -0.33645484 | Decrease 0.527204
D57N | c.169G>A Increase 0.27 Decrease -1 Decrease 0.580317
Giov c.29G>T Decrease -0.44 Decrease | -0.64207936 | Decrease 0.822543
Gil2C c.34G>T Decrease -1.59 Increase 0.35992912 Increase 0.668212
G13C c.37G>T Decrease -1.56 Decrease | -0.85930258 | Decrease 0.695908
G13D c.38G>A Decrease -1.01 Increase 0.1377395 Increase 0.698219
G13v c.38G>T Decrease -0.57 Decrease | -0.68586877 | Decrease 0.686209
T58I c.173C>T Increase 0.22 Decrease | -0.75989536 Increase 0.707965
Table 3
Physicochemical properties of KRAS mutants
Mutants | Molecular | Theoretical | Ext. coefficient, | Ext. coefficient, | Instability | Aliphatic | GRAVY
weight pl assuming all assuming all index index
(daltons) pairs of Cys Cys residues
residues form are reduced
cystines
Wild type | 21655.83 6.33 0.631 0.619 38.56 85.03 -0.432
A18D 21699.84 5.98 0.629 0.618 38.56 84.5 -0.46
D57N 21654.84 6.83 0.631 0.619 38.9 85.03 -0.432
G1lov 21697.91 6.33 0.63 0.618 39.46 86.56 -0.407
Gl2C 21701.92 6.33 0.635 0.618 40.23 85.03 -0.416
G13C 21701.92 6.33 0.635 0.618 37.51 85.03 -0.416
G13D 21713.87 5.98 0.629 0.618 37.91 85.03 -0.448
G13V 21697.91 6.33 0.63 0.618 37.91 86.56 -0.407
T58I 21667.88 6.33 0.63 0.619 39.35 87.09 -0.404
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The eight mutants and wild type KRAS exhibited an
Extinction coefficient of ~ 0.63, assuming all pairs of Cys
residues form cystines and ~ 0.618 for Extinction
coefficient, assuming all Cys residues are reduced. The
estimated half-life is 30 h in mammalian reticulocytes, in
vitro; >20 h in yeast, in vivo and >10 h in Escherichia coli,
in vivo in wild type KRAS and mutants. The instability index
was < 40 indicating its stability. The aliphatic index was
between 84 and 87 indicating these mutants are
thermostable. GRAVY scores of the mutants ranging
between -0.46 and -0.404 indicates its hydrophilicity and
indicates they are often soluble in aqueous environments like
cytoplasm or extracellular fluids.

KRAS Structure Prediction and Validation: PSIPRED
tool was used to predict the secondary structures of the wild
and mutant KRAS. It was revealed that the secondary
structures were primarily composed of coils, helices and
strands (Fig. 1).

The wild type and KRAS mutants were modeled using the
Robetta server, which utilizes a deep learning-based
approach to modeling. Three dimensional models help in
understanding the interactions of the protein with that of the
ligand. Five models were generated for each input. The
generated models were validated through MolProbity server
and the best model which demonstrated high-quality
Ramachandran and rotamer distributions were chosen for
further analysis. The Ramachandran plot, based on phi and
psi dihedral angles, helps verify the protein backbone
conformation by evaluating each residue and categorizing
them into allowed, favored and outlier regions!*. The best
wild type and KRAS mutant constructs displayed 98.5% of
all residues in the 98% favored regions and 99.5-100% of all

residues in the allowed regions (>99.8%) in the
Ramachandran plot.
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Molecular Docking and Binding analysis: The KRAS
Wild type and the mutant proteins were docked with
Guanosine triphosphate (GTP) ligand using Autodock Vina.
Active site docking was performed, where the grid box was
set around the active site aminoacids -Gly10, Lys11, Lys16,
Metl122, Glyl2, Aspl3, Phe6l, Val62, GIn63, Asn66,
Tyr75, Glyl16, Gly117, Lys118, Cys119, Asp59, Serll?,
Thr153, Asn154, Asp154 and GIn155%. The grid parameters
of the wild type and mutant KRAS are listed in table 4.

The dockings were performed in triplicates and the average
binding energy in kcal/mol are tabulated in table 5. The wild
type has a binding energy of -7.5 + 0.46 kcal/mol. Most
mutations result in slight variations in binding energy, with
values ranging from -6.07 kcal/mol for T58I, which shows
the weakest binding, to -7.93 kcal/mol for D57N, which has
the strongest binding. Other mutations, such as A18D,
G12C, G13C and G13D, exhibit intermediate binding
energies, generally slightly lower than the wild type.
Mutations like G10V and G13V also show reduced binding
compared to the wild type, indicating a range of effects on
receptor-GTP binding affinity across the different variants.

PLIP was used to evaluate the various interactions between
the protein and GTP (Table 5). Post-dock analysis was
conducted to examine the various non-covalent interactions,
including hydrogen bonds, hydrophobic interactions and
electrostatic interactions, between the ligand and the protein.
Hydrogen bonds, in particular, play a crucial role in
determining protein stability within docking complexes®.
The wild type receptor has a binding energy of -7.5 + 0.46
kcal/mol, with key hydrogen bonds at Alall, Gly13, Vall4,
Gly15, Lysl16, Tyr32, Asnll6, Alal46 and Lys147,
hydrophobic interactions at Alal8 and Phe28 and a salt
bridge at Lys16.

30 40 50

HFVDEYDPTI EDSYRKQVVI DGET 50
GFLCVFAI NNT K s |EEBIHHY R E QY 100
TKQAQDLARSYGI PFI ETSAKTRA Q 150
TPGCVKI KKCI I M 189
30 40 50
30 40 50
HF VDEYDPTI EDSYRKAQVVI DGET 50
GFLCVFAI NNTIKSFEP|Il HHYREHQQI 6 100
TKQAQDLARS Y Gl PFI ETSsS AKTRAQ 150
TPGCVHKI KKCI1 I m 189
30 40 50
DDisordereﬂ

Transmembrane Helix

Signal Peptide

Fig. 1: Secondary Structure prediction of (a) wild type KRAS and (b) mutant D57N
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Table 4
Grid parameters of wild type and mutant KRAS used for docking studies
Receptor Size x Size y Size z Centre_x Centre_y Centre _z
Wild type 70 70 70 25.812 1.903 -8.751
A18D 50 56 88 8.064 4.452 -8.233
D57N 70 70 70 28.244 0 7.086
Giov 60 60 60 25.066 8.235 -3.289
G12C 60 60 60 22.673 -6.612 -12.087
G13C 60 60 60 11.86 24.197 21.043
G13D 60 60 60 21.484 -12.828 -8.526
G13Vv 60 60 60 11.755 20.332 17.335
T58I 50 72 90 -13.421 18.158 -11.576
Table 5

Binding energy and Protein Ligand Interaction of KRAS wild type and mutants with GTP

Binding Energy with Hydrophobic Salt Bridges
Receptor GTP (kcal/mol) Hydrogen Bond interactions
Alall, Gly13, Valil4,
Wild type -7.5£0.46 Gly15, Lys16, Tyr32, Alal8, Phe28 Lys16
Asnl16, Alal46, Lys147
Glu37, Asp38, Asp57, Aradl
A18D -7.13+0.46 GIn61, Tyr64, Thr74, - Ar 916%
Argl64, Lys170 g
Gly13, Gly15, Lys16,
D57N -7.93+0.23 Serl7, Val29, Asn57, Lys117, Lys147 Lys16
Lys117, Ser145, Lys147
Gly13, Vall4, Gly15,
G1lov -6.83+0.46 Lys16, Serl?, Tyr32, - Glu62
Gly60, Glu62, Glu63
Gly13, Gly15, Lys16,
Gl12C -7.1+0.17 Serl7, Tyr32, Thr35, Ala59 Lys147
Lys147
Cys13, Gly15, Alal8,
Asp30, Tyr32, Thr35,
G13C -7.23+0.38 Asn116, Lys117, Asp119, Alals Aspl19
Ser145, Alal46, Lys147
Aspl3, Glu3l, Tyr32, Lys117
G13D -7.6+0.17 Asn85, Asnl116, Lys117, Phe28 As 119’
Ser145, Alal46, Lys147 P
Vall3, Asp30, Tyr32, Lys117
G13Vv -6.93+0.38 Asn85, Asnl116, Lys117, Alal8, Phe28 As 119’
Ser145, Alal46, Lys147 P
Asn26, Lys42, GIn43, Lys42,
T58I -6.07+0.12 Lys185 - Lys185

The D57N mutant has a slightly stronger binding energy of
-7.93 + 0.23 kcal/mol, with hydrogen bonds at Gly13, Gly15,
Lys16, Serl7, Val29, Asn57, Lys117, Serl45 and Lys147,
hydrophobic interactions at Lys117 and Lys147 and a salt
bridge at Lys16. In the D57N mutant, several new hydrogen
bonds and hydrophobic interactions were introduced,
particularly involving Lys117 and Serl45, suggesting
altered interactions compared to the wild type.

Conclusion

In this study, we investigated KRAS mutations associated
with lung cancer, analyzing a total of 63 mutations sourced

https://doi.org/10.25303/212rjbt1530159

from the COSMIC database. These mutations were screened
for pathogenicity and we identified 8 mutations with the
highest pathogenic potential. Subsequently, we assessed the
stability of these 8 mutants, finding that all were stable.
Despite the mutations, the physicochemical properties of the
8 mutants remained nearly identical to the wild type. We
further examined the impact of these mutations by predicting
secondary structure changes and modeling the protein.

To evaluate the effects of mutations on GTP binding,

docking studies were performed, revealing that the D57N
mutant exhibited stronger binding energy compared to the
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wild type, suggesting increased activity. The remaining
mutants showed similar binding energy to the wild type.
Additionally, the protein-ligand interactions in the mutant
complexes were comparable to those observed in the wild
type, indicating similar interaction patterns.
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