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Abstract 
Lung cancer accounts for 12.3% of global cancer cases 

with variability across regions, races and genders. 

Lung cancer involves oncogene activation, such as 

mutated KRAS and tumor suppressor gene 

dysregulation like p53. KRAS mutations are commonly 

seen in pancreatic, colorectal and lung cancers. These 

mutations disrupt normal cell signaling and promote 

tumor growth. In this study, 63 KRAS mutations from 

28,964 COSMIC database samples were analyzed.  

 

The mutants were screened for their pathogenicity and 

nine highly deleterious mutations were identified. The 

stability of the mutants was checked with that of the 

wild type kras. Physiochemical properties were 

predicted using Protparam tools revealing that the 

properties of the mutants showed no major deviations 

from the wild type. The three-dimensional structures of 

the wild type and mutants were modelled using Robetta 

and the structures were validated using MolProbity 

server. The KRAS wild type and mutant structures were 

docked with Guanosine-5'-triphosphate (GTP) using 

Autodock Vina. The results indicated that the mutant 

D57N exhibited more affinity than the wild type and 

other mutants under study.  
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Introduction 
Lung cancer is the most prevalent of all the cancer cases15. 

Its incidence varies notably by geographic location, race and 

gender. Research indicates that women may be at an 

increased risk for lung cancer due to exposure to 

carcinogenic substances in tobacco smoke. Lifelong 

smokers face a lung cancer risk that is 20 to 30 times higher 

than that of non-smokers. While smoking rates in the United 

States are decreasing, China and Eastern Europe are 

experiencing a smoking epidemic which could lead to 

millions of new lung cancer diagnoses in this century15,22,23. 

Preventing lung cancer is feasible, as quitting smoking can 

substantially lower the risk.  

 

However, the benefits of cessation are not immediate; there 
is usually a delay of about seven years before risk reduction 

becomes noticeable22.  The development of lung cancer is 

associated with the activation of various oncogenes 

including c-Myc, mutated KRAS (which appears in 15%-

20% of non-small cell lung cancers, especially 

adenocarcinomas, but is absent in small cell lung cancers) 

and the overexpression of EGFR, cyclin D1 and BCL2. 

These oncogenes are essential for cell growth, division and 

apoptosis, all of which contribute to the onset and 

advancement of the disease9.  Most lung cancers express 

both telomerase RNA (hTR) and its catalytic subunit 

(hTERT), providing a pathway for cellular immortality.  

 

Tumor suppressor genes (TSGs) frequently involved in lung 

cancer include p53 (mutated in about 90% of small cell lung 

cancers and 50% of non-small cell lung cancers), 

Retinoblastoma (Rb) (affected in roughly 90% of small cell 

lung cancers and about 20% of non-small cell lung cancers) 

and p16 (observed in over 50% of non-small cell lung 

cancers but less than 1% of small cell lung cancers). These 

TSGs play critical roles in controlling cell growth and 

division and their dysfunction significantly contributes to the 

development and progression of lung cancer20.   

 

KRAS is a key protein involved in cell signaling, crucial for 

regulating cell proliferation and other essential cellular 

functions. It acts as an important hub in the cell's 

communication network, receiving signals from upstream 

sources and transmitting activating signals to various 

downstream pathways including the mitogen-activated 

protein kinase (MAPK) pathway8. KRAS exists in two 

primary states: an inactive form bound to guanosine 

diphosphate (GDP) and an active form bound to guanosine 

triphosphate (GTP). This switching between states is vital 

for its role in cellular signaling28.  

 

When KRAS is active and bound to GTP, it can interact with 

and activate several effector proteins, such as RAF kinases, 

PI3K and RalGDS. This activation occurs when a guanosine 

exchange factor (GEF) displaces GDP in the nucleotide 

binding site, allowing GTP to bind, aided by the higher 

concentration of GTP relative to GDP in the cell2. 

Deactivation of active KRAS occurs through the hydrolysis 

of GTP to GDP. Although KRAS has a low intrinsic GTPase 

activity, this process is significantly enhanced by GTPase 

activating proteins (GAPs), which accelerate the hydrolysis 

reaction and facilitate the transition from the active to 

inactive state2,12.  

 
In pancreatic, colorectal and lung cancers, mutations in the 

KRAS gene, particularly missense mutations that result in 

the substitution of a single amino acid, are common. These 
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mutations have profound effects on KRAS functionality and 

are linked to cancer development10. In this study, we have 

explored the effects of the KRAS gene mutations on lung 

cancer computationally, predicting its properties and 

stability by comparing it with the wild type KRAS.  

 

Material and Methods 
Collection and Screening of KRAS mutants: Variants in 

the KRAS gene associated with lung cancer were sourced 

from the COSMIC database25. The FASTA sequence of the 

wild type KRAS was obtained from the UniProt database 

with the identifier P01116.   

 

Pathogenicity analysis of the mutants: To study the effect 

of missense mutations on the pathogenicity of KRAS 

mutants, Meta-SNP server was used. Meta-SNP integrates 

four methods: PANTHER26, PhD-SNP4, SIFT21 and SNAP13 

which help in filtering disease causing mutations from 

neutral mutations.  The FASTA sequences of the wild type 

and mutant KRAS proteins were given as inputs and 

pathogenicity was determined for all 63 mutants.  

 

Stability analysis of the mutants: In order to predict the 

stability of missense mutations, iStable, I-Mutant2.0 and 

MUpro servers were used5-7.  

 

Physicochemical Properties of the mutants: ProtParam 

tool11 (www.expasy.org/tools/protparam.html) was used to 

predict the various physicochemical parameters of wild type 

and mutant proteins. Amino acid sequences were given as 

inputs. Properties such as theoretical isoelectric point, 

extinction coefficient, instability index, aliphatic index (AI) 

and GRAVY (Grand Average of Hydrophobicity) scores 

were predicted.  

 

KRAS Structure Prediction: PSIPRED (http:// 

bioinf.cs.ucl.ac.uk/psipred/) was used to evaluate the protein 

secondary structures of wild type and mutant proteins3.  The 

three dimensional structure of the wild type and mutant 

KRAS was predicted using Robetta server24 using Ab-intio 

modelling. The generated models were validated using 

Molprobity29. The best models were used for molecular 

docking. 

  

Molecular Docking and Binding analysis: Molecular 

docking was performed between guanosine triphosphate 

(GTP) and wild/mutant KRAS protein using AutoDock 

Vina27. Post-dock binding analysis of the protein-ligand 

complex was performed using protein ligand interaction 

profiler server (https://plip-tool.biotec.tu-dresden.de/plip-

web/plip/index)1.  

 

Results and Discussion  
Over the past two decades, high-throughput sequencing has 

driven a major increase in Single Nucleotide Polymorphism 

(SNP) data, leading to extensive mutation databases with 

numerous variants still unclassified. Previous studies 

highlight the significance of non-synonymous SNPs in both 

simple and complex diseases, emphasizing the role of in 

silico prediction tools to understand how these mutations 

affect protein structure and function. Protein-protein 

interactions (PPIs) are essential for cellular functions like 

signaling and regulation. Mutations at PPI interfaces, such 

as single amino acid substitutions, can disrupt protein 

complex formation by altering shape, size, secondary 

structure, hydrophobicity and causing conformational 

changes. Additionally, the mutation of a smaller amino acid 

to a larger one can create inter-molecular clashes, while a 

smaller mutation may result in gaps, disrupting protein 

folding and functionality17.  

 

Efficiently categorizing SNPs, particularly through 

combined data from in silico tools (e.g. structural analysis 

and molecular dynamics simulations), has enhanced 

predictions of genetic variant impact, improving our 

understanding of molecular pathology in rare disorders. 

These computational methods are crucial for advancing 

personalized medicine, pharmacogenomics and genetic 

disease prognosis16. In this study, we focus on characterizing 

functional effects of curated KRAS mutations using in silico 

pathogenicity and stability predictions, structure modeling 

and docking analysis.  

 

Collection and Screening of KRAS mutants: The 

COSMIC database, which houses causative mutations for 

various cancer types, was used to gather mutations 

associated with lung cancer in the KRAS protein. A total of 

190,793 KRAS mutations were identified from the COSMIC 

database, in which 28,964 were linked to the onset of lung 

cancer. Among the 28,964 mutation samples, 63 distinct 

mutations were identified and further analyzed for its 

pathogenicity and stability.   

 

Pathogenicity of the KRAS mutants: The pathogenicity of 

the 63 mutants was assessed using Meta-SNP server. The 

server integrates various tools like PANTHER, PhD-SNP, 

SIFT and SNAP. In PANTHER, PhD-SNP and SNAP, the 

output is given in values ranging between 0 and 1. If the 

predicted values of mutations are greater than 0.5, it is 

designated as disease-causing mutants and if the values are 

less than 0.5, they are designated as neutral. In case of SIFT 

tool, the values less than 0.05 are predicted as disease-

causing mutations and greater than 0.05 are considered to be 

neutral. Among the 63 mutants, 8 mutants: A18D, D57N, 

G10V, G12C, G13C, G13D, G13V and T58I were predicted 

to be disease causing by PANTHER, PhD-SNP, SIFT, 

SNAP and Meta-SNP (Table 1). These mutants were 

analyzed further for their stability and properties.  

 

Stability Prediction of KRAS mutants: The stability of a 

protein is the overall balance of forces that dictate whether it 

will assume its functional folded structure or an abnormal 

conformation that may impair its function26. The eight 
mutants were assessed for its stability upon mutation (Table 

2).  The iStable server16 predicts protein stability changes 

due to mutations using thermodynamic parameters. A single 
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amino acid mutation can significantly affect protein 

structure resulting in changes in folding free energy and 

stability.  I-Mutant2.0 was employed to assess the change in 

folding free energy (ddG)17. Stability of the mutants was also 

assessed using MUpro18. MUpro's confidence score ranges 

from −1 to 1, reflecting the likelihood of stability changes, 

with higher scores indicating greater confidence18.   

 

From the table 2, It could be observed that the mutations – 

G10V, G13C and G13V decreased the stability of the 

proteins. With respect to A18D and D57N, MUpro and 

iStable predicted that the mutation caused a decrease in the 

stability, whereas iMutant predicted an increase in stability. 

For the mutants G12C and G13D, MUpro and iStable 

predicted that the mutation caused an increase in the 

stability, whereas iMutant predicted an decrease in stability. 

For G13D, iMutant and iStable predicted that the mutation 

caused a decrease in the stability, whereas MUpro predicted 

an increase in stability. 

 

Physicochemical Properties of the mutants: The 

physiochemical properties of the eight mutants were 

predicted using Protparam tool (Table 3).  All mutants did 

not show much difference in molecular weight (~21kDa). 

With respect to the theoretical pI, the mutants - G10V, 

G12C, G13C, G13V and T58I had pI similar to that of the 

wild type KRAS (6.33).  

 

Table 1 

Pathogenicity values of various KRAS mutants 

Amino 

Acid 

Coding  

Sequence 

PANTHER PhD-SNP SIFT SNAP Meta-SNP 

A18D c.53C>A Disease 0.683 Disease 0.9 Disease 0 Disease 0.685 Disease 0.777 

D57N c.169G>A Disease 0.509 Disease 0.814 Disease 0 Disease 0.875 Disease 0.799 

G10V c.29G>T Disease 0.665 Disease 0.934 Disease 0 Disease 0.845 Disease 0.902 

G12C c.34G>T Disease 0.644 Disease 0.885 Disease 0.02 Disease 0.65 Disease 0.762 

G13C c.37G>T Disease 0.863 Disease 0.927 Disease 0.01 Disease 0.72 Disease 0.807 

G13D c.38G>A Disease 0.742 Disease 0.923 Disease 0 Disease 0.795 Disease 0.808 

G13V c.38G>T Disease 0.78 Disease 0.925 Disease 0.01 Disease 0.785 Disease 0.831 

T58I c.173C>T Disease 0.765 Disease 0.793 Disease 0.01 Disease 0.765 Disease 0.771 

 

Table 2 

Stability prediction of KRAS mutants 

Amino 

Acid 

Coding  

Sequence 

i-Mutant2.0 SEQ DDG MUpro Conf. Score iStable Conf. Score 

A18D c.53C>A Increase -0.02 Decrease -0.33645484 Decrease 0.527204 

D57N c.169G>A Increase 0.27 Decrease -1 Decrease 0.580317 

G10V c.29G>T Decrease -0.44 Decrease -0.64207936 Decrease 0.822543 

G12C c.34G>T Decrease -1.59 Increase 0.35992912 Increase 0.668212 

G13C c.37G>T Decrease -1.56 Decrease -0.85930258 Decrease 0.695908 

G13D c.38G>A Decrease -1.01 Increase 0.1377395 Increase 0.698219 

G13V c.38G>T Decrease -0.57 Decrease -0.68586877 Decrease 0.686209 

T58I c.173C>T Increase 0.22 Decrease -0.75989536 Increase 0.707965 

  

Table 3 

Physicochemical properties of KRAS mutants 

Mutants Molecular 

weight 

(daltons) 

Theoretical 

pI 

Ext. coefficient, 

assuming all 

pairs of Cys 

residues form 

cystines 

Ext. coefficient, 

assuming all 

Cys residues 

are reduced 

Instability 

index 

Aliphatic 

index 

GRAVY 

Wild type  21655.83 6.33 0.631 0.619 38.56 85.03 -0.432 

A18D 21699.84 5.98 0.629 0.618 38.56 84.5 -0.46 

D57N 21654.84 6.83 0.631 0.619 38.9 85.03 -0.432 

G10V 21697.91 6.33 0.63 0.618 39.46 86.56 -0.407 

G12C 21701.92 6.33 0.635 0.618 40.23 85.03 -0.416 

G13C 21701.92 6.33 0.635 0.618 37.51 85.03 -0.416 

G13D 21713.87 5.98 0.629 0.618 37.91 85.03 -0.448 

G13V 21697.91 6.33 0.63 0.618 37.91 86.56 -0.407 

T58I 21667.88 6.33 0.63 0.619 39.35 87.09 -0.404 
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The eight mutants and wild type KRAS exhibited an 

Extinction coefficient of ~ 0.63, assuming all pairs of Cys 

residues form cystines and ~ 0.618 for Extinction 

coefficient, assuming all Cys residues are reduced. The 

estimated half-life is 30 h in mammalian reticulocytes, in 
vitro; >20 h in yeast, in vivo and >10 h in Escherichia coli, 

in vivo in wild type KRAS and mutants. The instability index 

was < 40 indicating its stability. The aliphatic index was 

between 84 and 87 indicating these mutants are 

thermostable. GRAVY scores of the mutants ranging 

between -0.46 and -0.404 indicates its hydrophilicity and 

indicates they are often soluble in aqueous environments like 

cytoplasm or extracellular fluids. 

 

KRAS Structure Prediction and Validation: PSIPRED 

tool was used to predict the secondary structures of the wild 

and mutant KRAS. It was revealed that the secondary 

structures were primarily composed of coils, helices and 

strands (Fig. 1). 

 

The wild type and KRAS mutants were modeled using the 

Robetta server, which utilizes a deep learning-based 

approach to modeling. Three dimensional models help in 

understanding the interactions of the protein with that of the 

ligand. Five models were generated for each input. The 

generated models were validated through MolProbity server 

and the best model which demonstrated high-quality 

Ramachandran and rotamer distributions were chosen for 

further analysis. The Ramachandran plot, based on phi and 

psi dihedral angles, helps verify the protein backbone 

conformation by evaluating each residue and categorizing 

them into allowed, favored and outlier regions14. The best 

wild type and KRAS mutant constructs displayed 98.5% of 

all residues in the 98% favored regions and 99.5-100% of all 

residues in the allowed regions (>99.8%) in the 

Ramachandran plot.  

Molecular Docking and Binding analysis: The KRAS 

Wild type and the mutant proteins were docked with 

Guanosine triphosphate (GTP) ligand using Autodock Vina. 

Active site docking was performed, where the grid box was 

set around the active site aminoacids -Gly10, Lys11, Lys16, 

Met122, Gly12, Asp13, Phe61, Val62, Gln63, Asn66, 

Tyr75, Gly116, Gly117, Lys118, Cys119, Asp59, Ser117, 

Thr153, Asn154, Asp154 and Gln15519. The grid parameters 

of the wild type and mutant KRAS are listed in table 4.  

 

The dockings were performed in triplicates and the average 

binding energy in kcal/mol are tabulated in table 5. The wild 

type has a binding energy of -7.5 ± 0.46 kcal/mol. Most 

mutations result in slight variations in binding energy, with 

values ranging from -6.07 kcal/mol for T58I, which shows 

the weakest binding, to -7.93 kcal/mol for D57N, which has 

the strongest binding. Other mutations, such as A18D, 

G12C, G13C and G13D, exhibit intermediate binding 

energies, generally slightly lower than the wild type. 

Mutations like G10V and G13V also show reduced binding 

compared to the wild type, indicating a range of effects on 

receptor-GTP binding affinity across the different variants.  

 

PLIP was used to evaluate the various interactions between 

the protein and GTP (Table 5). Post-dock analysis was 

conducted to examine the various non-covalent interactions, 

including hydrogen bonds, hydrophobic interactions and 

electrostatic interactions, between the ligand and the protein. 

Hydrogen bonds, in particular, play a crucial role in 

determining protein stability within docking complexes18. 

The wild type receptor has a binding energy of -7.5 ± 0.46 

kcal/mol, with key hydrogen bonds at Ala11, Gly13, Val14, 

Gly15, Lys16, Tyr32, Asn116, Ala146 and Lys147, 

hydrophobic interactions at Ala18 and Phe28 and a salt 

bridge at Lys16.  

 

 

(a) 

 

(b) 

Fig. 1: Secondary Structure prediction of (a) wild type KRAS and (b) mutant D57N 
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Table 4 

Grid parameters of wild type and mutant KRAS used for docking studies 

Receptor Size_x Size_y Size_z Centre_x Centre_y Centre_z 

Wild type 70 70 70 25.812 1.903 -8.751 

A18D 50 56 88 8.064 4.452 -8.233 

D57N 70 70 70 28.244 0 7.086 

G10V 60 60 60 25.066 8.235 -3.289 

G12C 60 60 60 22.673 -6.612 -12.087 

G13C 60 60 60 11.86 24.197 21.043 

G13D 60 60 60 21.484 -12.828 -8.526 

G13V 60 60 60 11.755 20.332 17.335 

T58I 50 72 90 -13.421 18.158 -11.576 

 

Table 5 

Binding energy and Protein Ligand Interaction of KRAS wild type and mutants with GTP 

Receptor 
Binding Energy with 

GTP (kcal/mol) 
Hydrogen Bond 

Hydrophobic 

interactions 

Salt Bridges 

Wild type -7.5±0.46 

Ala11, Gly13, Val14, 

Gly15, Lys16, Tyr32, 

Asn116, Ala146, Lys147 

Ala18, Phe28 Lys16 

A18D -7.13±0.46 

Glu37, Asp38, Asp57, 

Gln61, Tyr64, Thr74, 

Arg164, Lys170 

- 
Arg41, 

Arg167 

D57N -7.93±0.23 

Gly13, Gly15, Lys16, 

Ser17, Val29, Asn57, 

Lys117, Ser145, Lys147 

Lys117, Lys147 Lys16 

G10V -6.83±0.46 

Gly13, Val14, Gly15, 

Lys16, Ser17, Tyr32, 

Gly60, Glu62, Glu63 

- Glu62 

G12C -7.1±0.17 

Gly13, Gly15, Lys16, 

Ser17, Tyr32, Thr35, 

Lys147 

Ala59 Lys147 

G13C -7.23±0.38 

Cys13, Gly15, Ala18, 

Asp30, Tyr32, Thr35, 

Asn116, Lys117, Asp119, 

Ser145, Ala146, Lys147 

Ala18 Asp119 

G13D -7.6±0.17 

Asp13, Glu31, Tyr32, 

Asn85, Asn116, Lys117, 

Ser145, Ala146, Lys147 

Phe28 
Lys117, 

Asp119 

G13V -6.93±0.38 

Val13, Asp30, Tyr32, 

Asn85, Asn116, Lys117, 

Ser145, Ala146, Lys147 

Ala18, Phe28 
Lys117, 

Asp119 

T58I -6.07±0.12 
Asn26, Lys42, Gln43, 

Lys185 
- 

Lys42, 

Lys185 

 

The D57N mutant has a slightly stronger binding energy of 

-7.93 ± 0.23 kcal/mol, with hydrogen bonds at Gly13, Gly15, 

Lys16, Ser17, Val29, Asn57, Lys117, Ser145 and Lys147, 

hydrophobic interactions at Lys117 and Lys147 and a salt 

bridge at Lys16. In the D57N mutant, several new hydrogen 

bonds and hydrophobic interactions were introduced, 

particularly involving Lys117 and Ser145, suggesting 

altered interactions compared to the wild type. 

 

Conclusion 
In this study, we investigated KRAS mutations associated 

with lung cancer, analyzing a total of 63 mutations sourced 

from the COSMIC database. These mutations were screened 

for pathogenicity and we identified 8 mutations with the 

highest pathogenic potential. Subsequently, we assessed the 

stability of these 8 mutants, finding that all were stable. 

Despite the mutations, the physicochemical properties of the 

8 mutants remained nearly identical to the wild type. We 

further examined the impact of these mutations by predicting 

secondary structure changes and modeling the protein.  

 
To evaluate the effects of mutations on GTP binding, 

docking studies were performed, revealing that the D57N 

mutant exhibited stronger binding energy compared to the 
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wild type, suggesting increased activity. The remaining 

mutants showed similar binding energy to the wild type. 

Additionally, the protein-ligand interactions in the mutant 

complexes were comparable to those observed in the wild 

type, indicating similar interaction patterns. 
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